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In this paper we study the steady uniform flows that develop when granular material
is released from a hopper on top of a static pile in a channel. More specifically, we
focus on the role of sidewalls by carrying out experiments in set-up of different widths,
from narrow channels 20 particle diameters wide to channels 600 particle diameters
wide. Results show that steady flows on pile are entirely controlled by sidewall effects.
A theoretical model, taking into account the wall friction and based on a simple
local constitutive law recently proposed for other granular flow configurations, gives
predictions in quantitative agreement with the measurements. This result gives new
insights into our understanding of free-surface granular flows and strongly supports
the relevance of the constitutive law proposed.

1. Introduction
Grains avalanching on a sand heap are often presented as the archetype of granular

flows. In this situation both the liquid and solid behaviours of granular material
coexist. The flow is confined in a thin layer of grains, typically few grain diameters,
flowing at the free surface of a pile formed by static grains. Despite the apparent
simplicity of the configuration, its description still represents a serious challenge as
it gathers in a single flow all the difficulties specific to granular material. How can
we describe the transition between the liquid and the solid behaviour? How is the
thickness of the flowing layer selected? What kind of constitutive laws can describe
the flow characteristics? These questions have motivated many experimental works
in the ten last years. Two different configurations have been used to create surface
granular flows: the flow on a heap and the rotating drum (figure 1). In the first one, the
granular material is released from a hopper on top of a pile. The control parameter
is the flow rate. The second one is a cylinder half-filled with the granular material. In
this case, the control parameter is the rotation speed that indirectly controls the flow
rate of the flowing layer. In both configurations, the flow characteristics are similar
and can be summarized as follow:

(i) A minimum flow rate (or rotation rate in the rotating drum) exists below which
the flow is intermittent and proceeds as successive avalanches. Above this threshold,
a steady regime is observed (Rajchenbach 1990; Lemieux & Durian 2000).

(ii) In the steady regime, the free-surface inclination, sometimes called the dyna-
mical angle of friction, increases when increasing the flow rate (Ancey 2001; Khakhar
et al. 2001a; Taberlet et al. 2003; GDR MiDi 2004).
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(iii) In the steady regime, the velocity profile (often measured at the sidewall) is
localized at the free surface, with a linear profile at the top followed by an exponential
tail (Komatsu et al. 2001; GDR MiDi 2004). The shear rate in the flowing region is
of order

√
g/d where g is the gravity and d the particle diameter, this shear rate being

weakly dependent on the flow rate (Rajchenbach 1990; Khakhar et al. 2001b; Bonamy,
Daviaud & Laurent 2002).

Based on these observations, several theoretical approaches have been proposed.
Some are based on the analysis of individual grain motions, showing that a linear
profile localized at the free surface could be explained by the dissipative nature of
collisions (Andreotti & Douady 2001; Rajchenbach 2003; Hill, Gioia & Tota 2003).
Others are hydrodynamic descriptions based on different rheological constitutive
laws (Elperin & Vikhanski 1998; Khakhar et al. 2001; Bonamy et al. 2002; Josserand,
Lagrée & Lhuillier 2004). In all these attempts to describe free-surface flows, the
influence of sidewalls is neglected. The experimental measurements are interpreted
as if the sidewalls, often with smooth surfaces, do not play a major role in the flow
dynamics.

However, this assumption is far from being straightforward and in our opinion
warrants more investigation. Some signs exist in the literature showing that sidewalls
could have a crucial role in the dynamics of surface granular flows. The most
striking evidence concerns the inclination angle of the free surface with respect to
horizontal. In the intermittent avalanching regime, experimental works have shown
that angles at which avalanches start or stop strongly depend on the width between
lateral walls (Grasselli & Herrmann 1997; Zhou et al. 2002). In the continuous flow
regime, experiments carried out in long rotating drums have shown that the surface
inclination is a few degrees higher close to the wall than in the middle of the drum
(Dury et al. 1998; Yamane et al. 1998). Some studies of flow on a heap have revealed
the existence of surprisingly steep piles at high flow rates in narrow channels (Taberlet
et al. 2003). This angle made by the free surface with the horizontal controls the stress
distribution in the material. As a consequence, if sidewalls have a strong influence on
the inclination, it is legitimate to wonder to what extent they do not dramatically also
modify the flow characteristics, such as the flow thickness and the velocity profiles.
However, most of the experiments are carried out in narrow devices, with a gap of
less than 30 particle diameters between sidewalls. Few studies are made in the wide
rotating drum configuration and none in the wide heap configuration. What happens
in the case of a large system? Are flow characteristics going to change? Does the
influence of sidewalls disappear for a large enough system?

Answering these questions on the role of sidewalls for granular surface flows repre-
sents the first goal of this study. Once we know whether sidewalls can be neglected or
not and what their influence is, it will be possible to use the surface flow configuration
properly to test constitutive equations for dense granular flows. The second goal of
this study is to test an empirical rheology recently proposed for other configurations.

In a recent collective work (GDR MiDi 2004), data from different configurations
and from different research groups have been collected. A local rheology has been pro-
posed, which was able to unify results numerically obtained on plane shear (Chevoir
et al. 2004; Iordanoff & Khonsari 2004; Da Cruz et al. 2004) and results obtained
both in experiments and in simulations for flows down inclined planes (Pouliquen
1999; Chevoir et al. 2001; Pouliquen & Forterre 2002; Forterre & Pouliquen 2003;
Silbert, Landry & Grest 2003). The rheology is written as a friction law, i.e. the shear
stress is proportional to the normal stress, with a coefficient of friction depending
on a dimensionless shear rate. Although this local approach suffers from several



Role of sidewalls in granular surface flows 169

g g

(a) (b)

Figure 1. The two configurations leading to granular surface flows. (a) Flow on
a heap; (b) rotating drum.

limits which are discussed in GDR MiDi (2004), the fact that a single law correctly
describes two different configurations, the plane shear and the inclined plane, is in our
opinion very encouraging and deserves a deeper study with other flow configurations.
In that sense, granular surface flows represent a severe test for this local rheology as
they exhibit peculiar flow characteristics, e.g. localized velocity profiles, that strongly
contrast with those observed in plane shear or inclined plane configurations.

The aims of this study are then, (i) to clarify the role of sidewalls for granular
surface flows, and (ii) to test the local constitutive law proposed recently in GDR
MiDi (2004). The configuration we choose is the flow on a heap (figure 1a). This
choice rather than the rotating drum configuration is motivated by the fact that steady
uniform flows, i.e. with a flow thickness independent of the distance to the hopper,
can be obtained for heap flows whereas in rotating drums the thickness varies along
the flow. For this configuration we systematically investigate the role of sidewalls
by experimenting with channels of different widths from a quasi two-dimensional
configuration (20 particle diameters) to a very wide situation (600 particle diameters).
We then compare our measurements of the free-surface inclination, the free-surface
velocity and the flow thickness in the steady uniform regime to the prediction of the
local rheology.

The paper is organized as follows. The experimental set-up and measurement
methods are presented in § 2. The influence of the channel width on the steady
uniform flow properties is presented in § 3. The theoretical approach based on the
local rheology proposed recently in GDR MiDi (2004) is described in § 4, and the
predictions are compared with measurements in § 5. A discussion and conclusions are
given in §§ 6 and 7.

2. Experimental method
2.1. Experimental set-up

The experimental set-up is sketched in figure 2. We use glass beads of diameter d =
0.53 ± 0.05 mm as granular material. The box is 1.5 m long, made of a rough bottom
plate and two smooth lateral glass walls. The gap W between the sidewalls can be



170 P. Jop, Y. Forterre and O. Pouliquen

Figure 2. Experimental set-up.

changed from 1 cm (19d) up to 30 cm (570d). The box is closed at the bottom end by a
10 cm height plate. In order to use less granular material, the whole set-up is inclined
at an angle less than the angle of repose of the material, so that, when the box is filled,
the static layer is everywhere thicker than 10 cm (190d). On top of this static layer,
we release particles from a hopper placed at the top of the channel. The flow rate is
controlled by the opening of the gate. The experimental procedure is the following.
At the beginning of each experiment the box is empty. When opening the gate
of the hopper, the beads first fill the box before flowing over the end plate when the
box is full. For high enough flow rates, a steady regime then develops with a layer of
grains flowing on top of a static pile. All the measurements presented in the following
are done in the steady regime.

In this regime, far from the entrance and the exit, the flow is uniform along the
x-direction. The free surface makes a constant angle θ with the horizontal and is
almost flat in the transverse direction (its variations between the wall and the middle
are less than 2 grain diameters). The free-surface velocity is aligned along the x-
direction, the transverse velocity being less than 1 % of the longitudinal one. The
free-surface velocity is also uniform along the x-direction however it varies in the
transverse y-direction: the flow is faster in the middle of the channel. The thickness of
the flowing layer also varies in the y-direction and is larger in the middle than at the
walls. In order to characterize the flow, four quantities are measured: the mean flow
rate per unit of width Q (m2 s−1) (in the following we simply call Q the ‘flow rate’),
the inclination of the free surface with the horizontal θ , the thickness of the flowing
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layer h measured it the centreline of the channel, and the free-surface velocity field
Vsurf(y). It must be emphasized that, in this configuration, the only control parameter
is the mean flow rate Q fixed by the aperture of the hopper. The thickness h, the
velocity Vsurf and the inclination θ are chosen by the system. It should be noticed that
the control parameter Q is a flow rate averaged over the channel. The local flow rate
is not uniform and is smaller close to the wall than in the middle of the flow.

2.2. Measurement methods

In order to measure Q, we weigh the mass m flowing out of the channel during a finite
time T (between 30 s and 3 s) once the steady regime is reached. Q is then computed
knowing the density of the beads ρs = 2450 kg m−3 and assuming the volume fraction
of beads during the flow to be φ = 0.6: Q =m/(TWρsφ). The inclination of the free
surface θ is measured from a picture taken from the side and analysed using image pro-
cessing (software ImageJ available from the internet at http://rsb.info.nih.gov/ij/).
The measurement precision is about ± 0.04◦. Velocity profiles are computed from
movies recorded by a fast camera taken at rate between 250 and 1000 frames
per second. The velocity profile is then obtained using a modified particle imaging
velocimetry (PIV) method. The precision is about ± 3 mm s−1. Finally, we have to
measure the flow thickness.

Since the granular material is opaque, we cannot measure h in the bulk using a
camera. In order to estimate the flow thickness far from the walls, we have developed
a weakly intrusive method based on erosion measurements. A thin metal blade,
0.45 mm thick and 2 cm wide, is blackened with the flame of a candle. The blade is
then suddenly immersed in the flow, perpendicular to the free surface and held at
a fixed position for 20 s before we remove it (figure 3a). We have checked that the
upstream flow is hardly perturbed by the intrusion of the thin blade. Once the blade is
removed, we observe that the black soot has been eroded in the region where the
grains were flowing, but not in regions where grains were static. In order to test the
method, we have put the blade close to the wall, where we can compare the erosion
pattern with the depth velocity profile along z measured using PIV. A typical result
is shown in figure 3(b)(ii) with shows the eroded blade lighted at a low incidence
angle. The bright part corresponds to the region eroded by the flow. Figure 3(b)(iii)
is the intensity profile of the blade averaged over the width. For comparison, we
have plotted on the same figure the corresponding velocity profile (figure 3b(i)). The
correlation of the erosion pattern and the velocity profile is good, showing that the
erosion method gives a good estimate of the flow thickness h (see legend of figure 3).

3. Influence of the sidewalls on steady uniform flows
In order to understand precisely the influence of the sidewalls on granular surface

flows, measurements are made for channel widths varying from 19 particle diameters
to 570 particle diameters. For each width, the inclination θ , the thickness h and the
free-surface velocity Vsurf have been measured as a function of the flow rate Q. The
results presented in the following are expressed in terms of dimensionless variables
using the particle diameter d and the gravity g. The dimensionless flow rate is Q∗ =
Q/d

√
gd , the dimensionless thickness is h∗ = h/d , the dimensionless width is W ∗ =

W/d and the dimensionless velocities are V ∗ = V/
√

gd .

3.1. Existence of steady uniform flows

The first observation is that a minimum flow rate Qc is necessary to obtained a steady
flow (Rajchenbach 1990; Lemieux & Durian 2000). Below this critical value, the flow is
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Figure 3. (a) Thickness measurement method. (b) Calibration of the erosion method. (i)
Velocity profile at sidewall. (ii) Black soot on the blade eroded by the flow. (iii) Grey value
along the blade. The flow thickness h is estimated as follows: the top part of the curve is fitted
by two straight lines and the bottom part is fitted by a modified Gaussian. h is defined as
the distance between the intersection of the lines and the point of maximum curvature of the
fitted curve.

intermittent and occurs by successive avalanches. Above this value, a steady regime is
reached, where the outlet flow rate is constant and equal to the inlet flow rate. We show
here that Qc depends on the width of the channel W (figure 4). For wide channels, we
must supply more grains per second and per unit of width to reach a stationary flow.

In the stationary regime, the spatial variation of the flow along the slope is as
follows. The grains falling from the hopper first accelerate at the top of the pile,
before reaching a steady velocity. About 10 cm from the outlet, they accelerate again
and fall over the end plate. In between the entrance and the outlet regions, the flow is
then uniform, independent of the x position. All the measurements presented below
were made in this steady and uniform regime.
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Figure 5. Surface slope θ as a function of the dimensionless flow rate Q∗ for different widths.

3.2. Free-surface inclination

As observed in previous studies (Rajchenbach 1990; Dury et al. 1998; Yamane et al.
1998; Grasselli & Herrmann 1999; Lemieux & Durian 2000; Khakhar et al. 2001a),
the angle between the free surface and the horizontal increases when increasing the
flow rate, as shown in figure 5. However, although this effect is important for narrow
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and 570. (d ) V ∗
surf (y) versus y/W for different Q∗ for the widest channel W ∗ = 570.

channels, it almost disappears for the widest channel we have investigated. For
W/d = 570, the surface slope remains almost constant close to the angle of repose of
our material. This clearly shows that the increase of the slope with flow rate is due
to the additional friction induced by the sidewalls as mentioned in several previous
studies (Taberlet et al. 2003; Courrech du Pont et al. 2003; GDR MiDi 2004).

3.3. Free-surface velocity

In order to investigate the influence of the channel width on the free-surface velocity,
we first perform experiments keeping the same flow rate per unit of width Q, but
changing the gap W between the sidewalls. Figure 6(a) shows the transverse surface
velocity profiles V ∗

surf(y) for Q∗ =89. In these figures, the transverse direction y is
rescaled by the channel width. The striking result is that the wider the channel, the
slower the flow. By increasing the width from 19d to 570d , the velocity is divided by
a factor three. This effect is observed for all the flow rates as shown in figure 6(b). In
this figure, the velocity V ∗

max in the centreline (y/W = 0.5) is plotted as a function of
the flow rate Q∗ for the different widths. The velocity increases with respect to the
flow rate, but decreases when increasing the width. The last important remark about
the surface velocity profile is that profiles are less and less uniform in the transverse
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Symbols as for figure 5.

direction when enlarging the channel. Whereas for W ∗ = 19 a plug region with a
constant velocity exists far from the walls, this is no longer the case for W ∗ = 570
(figure 6c). In this widest channel, the profile is curved all across the channel whatever
the flow rate is (figure 6d ). Therefore enlarging the channel does not eliminate wall
effects, contrary to what one would expect.

3.4. Thickness of the flow

We have seen above that, for a given flow rate per unit of width, the flow velocity
decreases when enlarging the channel. Because of mass conservation this implies that
the flow should be thicker. This is verified by our measurements of the thickness in the
middle of the channel (y/W = 0.5) using the erosion method. In figure 7(a), we have
plotted how the thickness h varies as a function of the flow rate for different channel
widths W . The flow thickness increases with the flow rate, but as expected from the
velocity measurements, it also increases with W . For the widest channel the flow
thickness reaches unusually high values about 75 grain diameters, much higher than
the classical 10 or 20 particle diameters usually reported in the literature (GDR MiDi
2004). Concerning the variations of h along y, no systematic measurement of the
profile has been made. However, we have noticed that the transverse thickness profile
behaves like the free-surface velocity profile. For narrow channels, the flow thickness
is uniform across the width, whereas for wide channels, variations are observed: h

is smaller close to the wall than in the centre part. For example, for W = 142d and
Q∗ = 16.5, h = 26.5d in the centreline of the channel, but is only 17.5d at the wall.

3.5. Discussion

Whereas for narrow channels we replicate results presented in the literature, e.g.
increase of inclination with flow rate, flowing layer about ten particle diameters thick,
our measurements in wide channels dramatically contrast with the previous studies.
The major difference is that the flow occurs on, much thicker layer and at a much
lower velocity in wide channels than in narrow channels. This contradicts the result
commonly admitted for free-surface flows that the shear rate in the flowing region
is of order of 0.6

√
g/d and weakly depends on the flow rate (Khakhar et al. 2001b;

Bonamy et al. 2002; Rajchenbach 2003; GDR MiDi 2004). This is clearly shown in
figure 7(b) where we have plotted an estimate of the shear rate V ∗

max/h∗ as a function
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of the flow rate Q∗. Although for narrow channels the shear rate is of order 0.3
√

g/d ,
it is almost 10 times lower in the widest channel. Moreover, figure 7(b) shows that
the shear rate is not constant and obviously depends both on the flow rate Q and on
the channel width W .

This systematic study in channels of different widths therefore shows that sidewalls
play a crucial role in the dynamics of granular flows on a pile. It seems impossible to
eliminate them by enlarging the system. This observation suggests that it is essential to
take into account sidewalls if we want to model granular surface flows, at least in the
steady regime. In the following, we derive a theoretical model based on an empirical
rheology recently proposed to describe dense granular flows, which takes into account
additional wall friction, and compare the predictions with our experimental results.

4. Theoretical model
4.1. Choice of the rheology

In order to describe our surface flows, we need first to know the material rheology.
Although the question of constitutive equations for dense granular flows is still a
matter of debate, recent works in different configurations seem to converge and allow
a simple empirical rheology to be proposed (GDR MiDi 2004).

The first information comes from the inclined-plane configuration, when a granular
layer flows down an inclined bumpy surface. The study of the steady uniform flows,
for which scaling laws have been observed (Pouliquen 1999; Silbert et al. 2003), allows
an empirical friction law to describe the shear stress that develops at the interface
between the flowing layer and the rough surface to be proposed. This law stipulates
that the shear stress is proportional to the weight of the layer multiplied by a friction
coefficient which depends on both the layer thickness h and the mean depth-averaged
velocity 〈V 〉. Based on the experimental measurements, the following form has been
proposed for the basal friction coefficient µb(〈V 〉, h) (Pouliquen & Forterre 2002):

µb(〈V 〉, h) = µs +
µ2 − µs

h
√

ghβ

〈V 〉dL0

+ 1

, (4.1)

where d is the particle diameter, g the gravity and µs , µ2, β and L0 are constants
that depend on the material. This law has been successfully applied in the framework
of depth-averaged equations to predict quantitatively the spreading of a granular
mass (Pouliquen & Forterre 2002) and the development of instabilities (Forterre &
Pouliquen 2003). However, it cannot be considered as a constitutive law since it
applies only at the base of the layer.

The link with the rheology has been made only recently (GDR MiDi 2004), when
comparing these results with numerical studies in the configuration of the plane shear
cell (Da Cruz et al. 2004; Iordanoff & Khonsari 2004). In this configuration, a granular
layer is confined between two rough plates under a confining pressure P and sheared
at a shear rate γ̇ . The numerical simulations reveal that the shear stress τ verifies
a friction law and that the friction coefficient depends on a single dimensionless
parameter I . I can be interpreted as the ratio between the time scale given by the
shear rate and the time scale related to the confining pressure (GDR MiDi 2004). The
relation between shear stress and shear rate is then written in the following form:∣∣∣ τ

P

∣∣∣ = µ(I ) with I =
|γ̇ |d√
P/ρs

, (4.2)

where d is the particle diameter and ρs is the particle density.
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The interesting result arises when comparing this relation with the one obtained
on the inclined plane for the basal friction law (4.1). If we assume that the material
is everywhere defined by the local constitutive law given by (4.2), predictions can
be made for flows on inclined planes (see Appendix A). We can then show that the
predictions are compatible with the basal friction law (4.1) issued from experimental
measurements only if we choose for the function µ(I ) the following form:

µ(I ) = µs +
µ2 − µs

I0/I + 1
with I =

|γ̇ |d√
P/ρs

. (4.3)

The coefficients µs and µ2 are the same as in (4.1) and the constant I0 is related to
the coefficient L0 and β in (4.1) (see Appendix A). According to this law, the friction
coefficient goes from a minimum value µs for very low I up to an asymptotical value
µ2 when I increases, as sketched in figure 8.

By interpreting the basal friction law found in inclined-plane experiments in the
framework of the constitutive law found in plane shear, we are then able to propose
a simple local rheology. The next step is to ask whether this rheology, which correctly
describes plane shear and flows on inclined planes, can also predict surface flows on
heaps. In the following, we apply (4.2) and (4.3) to heap flows taking into account
the friction with sidewalls, and we compare the predictions with the experimental
results presented in the previous section. In order to do so, we must quantitatively
determine the coefficients of the constitutive law (4.3). The glass beads used in our
study being the same as those used by Forterre & Pouliquen (2003) in an inclined-
plane experiment, we can easily compute the coefficients of the relation µ(I ) from
the coefficients that have been measured for the basal friction law. We found that
µs = tan(20.9◦), µ2 = tan(32.76◦) and I0 = 0.279 (see Appendix A). This choice implies
that there is no fit parameter in our constitutive law. In other words, the idea adopted
here is to calibrate the constitutive law on previous experiments on an inclined plane,
and check if quantitative predictions can be made for surface flows on heaps.
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4.2. Model including wall effects

Knowing the rheology, it is then possible to write the momentum balance for a
granular layer flowing on a heap. Let us consider a semi-infinite granular medium
sandwiched between two smooth plates. We assume that the flow is uniform in the
x-direction, the free surface making an angle θ with horizontal. In addition we neglect
the variations of the velocity and the thickness in the y-direction. This simplification
will be discussed in § 6.1. We can then write the force balance for a slice of material of
length dx, thickness z and width W (figure 9). Four forces apply on the elementary slice.

The gravity: dxWρgz sin(θ), where ρ = ρsφ.
The two lateral friction forces due to the sidewalls Fw = −2 dx

∫ z

0
µwρgz′ cos(θ) dz′.

Here two assumptions are made: first we assume that the beads slip against the
sidewalls and we write the induced stress as a pure solid friction with a constant
coefficient of friction µw . Measurement of glass beads sliding on glass walls gives
µw = tan(10.4 ± 0.3◦). Secondly, the pressure P is assumed to be isotropic. This last
assumption seems to be verified in simulations (Prochnow, Chevoir & Albertelli 2000;
Silbert et al. 2001).

The force Fb that develops on the bottom face of the element due to the shear
inside the material. According to our choice of the rheology (4.2), this force is
Fb = −dxWµ(I (z))ρgz cos(θ), where I (z) = |γ̇ (z)|/

√
φgz cos θ .

The balance of the three forces leads to the following equation:

0 = tan(θ) − µw

z

W
− µ(I (z)). (4.4)

For a given inclination θ , the parameter I (z) and thus the shear rate γ̇ (z) are then
obtained from (4.3) and (4.4) and then integrated to give the velocity profile. Before
computing the velocity profile, a first remark can be made about the selection of the
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flow thickness. When going deeper in the pile – increasing z –, the friction term due
to the walls – the second term in (4.4) – increases. Consequently, the force balance
implies that µ(I (z)) decreases. However, the internal friction cannot be less than the
critical value µs reached when I goes to zero, i.e. when the material is not sheared
(figure 8). As a consequence, there exists a critical depth h below which the gravity,
being screened by the lateral friction, is too weak to induce a shear in the material.
The flow thickness is then given by the following relation:

h

W
=

tan(θ) − µs

µw

. (4.5)

This linear relation between the flow thickness and the channel width has been pre-
viously obtained by other authors (Roberts 1969; Savage 1979; Taberlet et al. 2003).
However, in our description where a local rheology is introduced, we can go further
and analytically derive from (4.3) and (4.4) all the flow properties: the velocity profile
and the variations with the flow rate of the inclination, of the surface velocity and of
the thickness. The exact analytical expressions are given in Appendix B. Examples of
predicted velocity profiles are shown in figure 10. The flow is localized close to the
free surface with a profile that looks like those experimentally observed.

Beyond the analytical results given in Appendix B, interesting scaling laws arise
from the expression of the dimensionless parameter I . It is easy to show from (4.4)
that the shear rate can be written as follows:

γ̇ ∗(z∗, θ)

W ∗1/2
=

√
z∗

W ∗ F

(
z∗

W ∗ , θ

)
, (4.6)

where the function F is given in Appendix B. By successive integrations, we then
obtain the following scaling laws for the velocity V ∗ and flow rate Q∗:

V ∗(z∗, θ)

W ∗3/2
= G

(
z∗

W ∗ , θ

)
,

Q∗(θ)

W ∗5/2
= K(θ), (4.7)



180 P. Jop, Y. Forterre and O. Pouliquen

where

G(x, θ) =

∫ x

h∗/W ∗

√
ZF (Z, θ) dZ, K(θ) =

∫ h∗/W ∗

0

G(Z, θ ) dZ. (4.8)

In all these expressions, the inclination θ plays the role of the control parameter. Since
in our experiments we control the flow rate and not the inclination, it is convenient
to rewrite (4.5) and (4.7) choosing Q as a control parameter instead of θ . The scaling
laws can then be written as follow:

tan(θ) = f1

(
Q∗

W ∗5/2

)
,

V ∗(z∗, Q∗)

W ∗3/2
= f2

(
z∗

W ∗ ,
Q∗

W ∗5/2

)
,

h∗

W ∗ = f3

(
Q∗

W ∗5/2

)
, (4.9)

where the functions f1, f2 and f3 can be linked to the functions F , G and K (see
Appendix B). In terms of dimensional variables, the scaling laws are given by:

tan(θ) = f1

(
dQ

√
gW 5/2

)
,

dV (z, Q)
√

gW 3/2
= f2

(
z

W
,

dQ
√

gW 5/2

)
,

h

W
= f3

(
dQ

√
gW 5/2

)
, (4.10)

Let us underline that these scaling laws do not depend on the real shape of
µ(I ), (4.3), but derive from the expression of the dimensionless number I . Only the
functions fi are related to the exact expression of µ(I ).

Finally, we can show from the forces balance, (4.4), and the shape of the friction
coefficient µ(I ), (4.3), that steady uniform solutions are possible only for a finite range
of surface inclinations given by µs < tan θ <µ2. The lower limit corresponds to h =0,
i.e. the flow rate vanishes when θ → θs = arctan(µs). The upper limit corresponds
to the maximal angle θ2 = arctan(µ2) that can be balanced by the internal friction.
Above this flow rate the flow accelerates along the pile. From Appendix B (B 5), we
can show that this maximal angle corresponds to a maximum flow rate Q∗(θ2) for
which steady flows are predicted:

Q∗(θ2)

W ∗5/2
= 4

15
I0

√
φ cos(θ2)

(
µ2 − µs

µw

)5/2

. (4.11)

5. Comparison with experimental measurements
5.1. Scaling laws

In order to check the validity of the theoretical model, we first compare all our experi-
mental measurements carried out for different widths and different flow rates with
the predicted scaling laws (4.9). To this end, we have plotted in figures 11, 12 and 13
our measurements in terms of the three quantities tan(θ), V ∗

surf/W ∗3/2 and h∗/W ∗ as a

function of Q∗/W ∗5/2, the scaling predicted by (4.9). The striking result is that, in the
three cases, all the data obtained from different channel widths collapse on a single
curve, showing that the predicted scalings correctly capture the influence of both the
flow rate and the channel width. The collapse is perhaps less accurate in figure 11 for
the inclination, where each set of data obtained for different W seems to converge to
a different angle for Q∗ = 0.

The second main result is that, not only do the experimental data collapse, but
they also quantitatively follow the theoretical predictions, as shown in figures 11, 12
and 13, where the solid lines correspond to predictions. The agreement between the
model and the experimental data is quantitatively good, although we can see that
the predictions for the surface velocity are 15–20 % below the measurements and
those for the thickness h are 10–15 % above the measurements. Another quantitative
test consists of studying the asymptotic behaviour at low flow rates. Power laws can be
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Figure 11. tan(θ ) as a function of Q∗/W ∗5/2 for different widths (W ∗ from 19 to 570), same
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model (4.9).
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Figure 13. Rescaled flowing thickness h∗/W ∗ as a function of Q∗/W ∗5/2. Inset: same plot in
linear–linear axis. The solid line is the prediction of the model (4.9).

predicted by developing (4.9) for small flow rates, as shown in the Appendix C.
We find the following relations:

V ∗
surf

W ∗3/2
≈

(
Q∗

W ∗5/2

)5/7

,
h∗

W ∗ ≈
(

Q∗

W ∗5/2

)2/7

when

(
Q∗

W ∗5/2

 1

)
. (5.1)

When comparing with the experimental measurements, the agreement is good. The fit
of our data gives for the surface velocity an exponent equal to 0.722 to be compared
with 5/7 ≈ 0.714, and for the thickness an exponent equal to 0.295 to be compared
to 2/7 ≈ 0.286.

The last prediction that can be checked is the relation between the thickness h/W

and the angle θ , (4.5), coming from the force balance. The model predicts a linear
variation of the thickness with the tangent of the inclination. Figure 14 shows that our
measurements are in good agreement with the theoretical results. The experimental
data obtained for different widths collapse onto a single straight line, with a slight
departure from linearity observed at low flow rates. A good quantitative agreement
is again obtained.

This analysis then shows that the characteristics of steady uniform flows on a heap
are predicted well by our model based on the rate-dependent friction law coupled
with wall effects. It is important to keep in mind that in this analysis no parameter is
fitted. The parameters of the rheological law µ(I ) have been chosen from the previous
study by Forterre & Pouliquen (2003) who used the same granular material. The same
rheology is therefore able to describe quantitatively flows on a rough inclined plane
and surface flows on a heap.
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Figure 14. Rescaled thickness h∗/W ∗ as a function of tan(θ ) for different widths W ∗ = 19
(�), 57 (�), 142 (�), 283 (�), 570 (�). The solid line is the prediction of the model (4.5).

In the next section, we try to go further and discuss the domain of existence of
steady uniform flows, by comparing the range of flow rates where they are observed
with the prediction of the theory.

5.2. Minimum flow rate

In § 4.2, we have seen that the model predicts that steady uniform flows are possible
for a range of flow rates going from zero, when the thickness vanishes and θ → θs , to
a maximum value when θ → θ2. We have not been able in our experiment to reach
high enough flow rates to confirm the existence or not of a maximum flow rate.
However, our measurements clearly demonstrate the existence of a minimum flow
rate for steady uniform flows, below which the flow is intermittent. This minimum
flow rate depends on the channel width, as shown in figure 4.

This transition between steady flows and intermittent flows is not predicted by the
model. However, it is interesting to compare this situation with results about the
flow threshold obtained in the inclined-plane configuration. It has been shown that,
when a granular layer flows down a rough plane inclined at an angle θ without any
sidewall, no flow is possible if the layer thickness is less than a critical thickness
hstop(θ) (Pouliquen 1999; Daerr 2001; Silbert, Landry & Grest 2003). The existence
of a critical thickness seems to be linked to the existence of correlations in the grain
motions (Ertas & Halsey 2002; GDR MiDi 2004; Pouliquen 2004). Explaining the
flow threshold of granular material is far beyond the scope of this study. However, it is
interesting to wonder if a connection exists between the minimum thickness observed
in the inclined-plane configuration and the minimum flow rate we observe for flows
on heap. When decreasing the flow rate on a heap, the flow thickness decreases. The
critical flow rate can then be interpreted as a critical thickness. How does it compare
with the minimum thickness hstop(θ) observed on an inclined plane?
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Figure 15. Comparison of the domain of steady uniform flows between flows on a heap
(black dots, same data as in figure 4) and flows on inclined plane (dashed line, function hstop/d
from Forterre & Pouliquen 2003). The continuous straight lines indicate how h/d and tan θ
vary in the heap flow configuration when varying the flow rate Q at a fixed channel width W .

In order to answer this question, we consider a flow on a pile in a channel of width
W . For a given flow rate Q, the inclination of the free surface θ and the thickness h are
given in our model by (4.9). They are related by the linear relation (4.5) such that in the
plane (tan θ, h/d) the system follows a straight line when varying Q. In figure 15, five
such lines are drawn corresponding to five different channel widths. In the model, each
point of the lines corresponds a priori to a flow. However, experimentally this is not
the case. Because there exists a critical flow rate below which the flow is intermittent,
only the upper part of the lines in figure 15 can be reached. Our measurement of the
critical flow rate Qc(W ) then gives a critical thickness hc(W ) and a critical inclination
θc(W ), which are plotted in figure 15 for five widths. The striking results comes from
the comparison between the positions of the points (tan θc(W ), hc(W )) and the flow
threshold hstop(θ) observed on the inclined plane. In figure 15, we have plotted as a
dashed line the frontier between flow and no flow hstop(θ)/d coming from the inclined
plane experiments by Forterre & Pouliquen (2003) using the same glass beads. We
observe that the transition points (θc(W ), hc(W )) between steady and intermittent
flows on a heap coincide with the frontier hstop(θ) between flow and no flow on an
inclined plane. This result shows that the two a priori different conditions to form
steady uniform flows in both configurations, heap flow and inclined plane flows, are
quantitatively the same.

6. Discussion
6.1. Limits of the model

The theoretical model, which takes into account both the specificity of the granular
rheology and the influence of lateral walls, gives good quantitative predictions for
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the steady uniform flows observed on a heap. However, although the major features
are captured, some discrepancies exist which give information about the limits of the
approach.

The first limit is that we have written the forces balance assuming the flow to be
uniform across the channel. This choice, which simplifies the theoretical description,
does not allow us to describe the velocity variations experimentally observed across
the channel. To capture these three-dimensional effects, we have to take into account
shear in the transverse direction. It is then necessary to write a generalization of the
constitutive law (4.2) for fully three-dimensional deformations.

A second limit concerns the use of the local rheology written as a simple rate-
dependent friction law. As discussed in GDR MiDi (2004), this local approach is
probably no longer valid close to the flow threshold or close to the boundaries. This
limit is indeed observed in our case and gives rise to several discrepancies between
the prediction and the measurements. The first one concerns the flow threshold. The
local rheology is not able to predict the critical flow rate observed experimentally
below which intermittent flows occur. We have been able to understand the existence
of this minimum flow rate only by stipulating a priori that the flow cannot occur
below a critical thickness, by analogy to the case of flows on inclined planes. The
second discrepancy concerns the velocity profiles. The predicted profile presents a
zero shear rate at the free surface and a static region with zero velocity deep inside
the pile. Experimentally, the velocity profile exhibits a non zero shear rate at the
surface and an exponential tail deep in the pile (GDR MiDi 2004). One possible
explanation for the limit of the local rheology is that close to the flow threshold or
close to boundaries, non-local phenomena must be taken into account. Grain motions
are correlated on lengths which become comparable to the flow thickness or to the
distance to the boundaries (Ertas & Halsey 2002; GDR MiDi 2004; Pouliquen 2004).
The precise understanding of this limit and the development of constitutive laws
taking into account the non-local effects are still a challenge.

The last limit of our model lies in the description of the interaction of the flowing
layer with the sidewalls. The stress that develops between the material and the glass
wall is described in our model as a simple Coulomb friction. Whereas it is reasonable
for slow flows, for fast flows collisions between particles and wall could occur and
become predominant, leading to a rate-dependent wall stress. This limitation could
affect the maximum inclination predicted in our theory. According to our model, no
steady uniform flow on a pile can occur above the angle θ2. This value is typically
between 30◦ and 40◦, depending on the material used (Forterre & Pouliquen 2003).
Experiments by Taberlet et al. (2003) report much higher slopes up to 60◦ in narrow
channels and at high flow rates. A plausible explanation for such high inclinations
could be that the stress at the wall becomes collisional. Our model should then be
modified to take into account a rate-dependent wall friction.

6.2. Transition between flow on an inclined plane and flow on a pile

In the theory presented in § 4.2, the medium is considered as semi-infinite in order to
model flows on a pile. However, flows of a finite layer corresponding to inclined-plane
experiments carried out in narrow channels can be described using the same approach.
We just have to stipulate that the velocity should vanish at a given depth zb in order
to reproduce the no-slip condition on a rough surface. If the bottom plate is located
deeper than the critical thickness predicted in the semi-infinite case, the bottom does
not introduce any modification. The flow is made of a static layer close to the rough
surface with a flowing region on top of it (figure 16b). However, when the bottom plate
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Figure 16. Modification of the velocity profile when a rigid bottom is introduced in the
model for a given angle. (a) No bottom. (b) The rough bottom is deeper than the zero velocity
level zb > h. (c) zb < h. The dashed lines correspond to the velocity profile in the case of
semi-infinite flow.

Figure 17. Sketch of the transition between (a) flow on rough inclined plane and (b) heap
flow when increasing the flow rate.

is close to the free surface, the model predicts that the whole granular layer is flowing.
The velocity profile is therefore given by the upper part of the velocity profile for
an infinite heap (figure 16c). This simple observation allows us to understand better
the formation of static piles observed in experiments on inclined planes in narrow
channels. Savage (1979), Ancey (2001) and Taberlet et al. (2003) have shown that
when the inclination is low or the flow rate is high, the material does not flow down to
the bottom plate, but a static pile develops. A transition is then observed between flow
on a plane and flow on a pile. This can be understood as follows. In an inclined-plane
experiment, the two control parameters are the inclination of the plane and the flow
rate. For a given inclination, if the flow rate is less than the flow rate predicted in the
case of a semi-infinite pile at this angle, we are in the case of figure 16(c). The flow
extends over the whole granular layer, the free-surface being parallel to the bottom
plane (figure 17a). However, when increasing the flow rate, the thickness increases
and the friction with the wall becomes more and more important. Eventually, the only
way for the system to overcome the sidewall friction is to increase the free-surface
inclination at an angle higher than the bottom inclination θb (figure 17b). The forma-
tion of a static pile in confined inclined planes is thus controlled by the sidewalls.
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This explains why in very wide set-ups (Pouliquen 1999), or in molecular dynamic
simulations using periodic boundary conditions (Chevoir et al. 2001; Silbert et al.
2003), no static layer was ever observed, as soon as the inclination of the plate is above
the repose angle of the material.

7. Conclusion
In this paper, steady uniform flows obtained when granular material is released

at the top of a pile have been investigated. The influence of the sidewalls on these
surface flows has been carefully studied, and a theoretical model has been proposed.
From the experimental and theoretical analysis, two main conclusions emerge.

The first conclusion is that steady uniform flows on a pile are entirely controlled
by sidewall effects. The characteristics of flows in wide channels differ notably from
those observed in narrow channels. For the same flow rate per unit of width, the flow
is thicker and slower in a wide channel than in a narrow channel, thicknesses up to 70
particle diameters being observed. These observations contrast dramatically with the
picture commonly accepted that the flowing zone is necessarily thin with a shear rate
roughly constant. It means that precautions have to be taken when interpreting experi-
mental results in narrow channels to find information about the intrinsic flow rheology.

The second result concerns the constitutive law for dense granular flows. Using the
local rheology proposed in GDR MiDi (2004) and taking into account the friction
due to the lateral walls, we have been able to reproduce the major characteristics of
granular heap flows. In particular, the localization of the flow at the free surface is
predicted, but appears to be a consequence of the wall friction and is not an intrinsic
property of the rheology. Our analysis therefore dispels the difficulty raised in GDR
Midi (2004), that flows on inclined planes and flows on a heap are not compatible
when sidewall effects are neglected. We have shown here that both configurations
can be unified in the same framework choosing the rheology µ(I ). The unification is
not only qualitative, but also quantitative. The flow thickness, the velocity and the
free-surface inclination measured for flow on a heap are predicted within 15 %, when
the friction law is calibrated based on measurements for flows on inclined planes. The
comparison also extends to the flow threshold, which appears to be the same in both
configurations once the critical flow rate observed in heap flows is interpreted in terms
of a critical thickness. Of course, a number of limits exist that have been identified
and related to the fact that the proposed constitutive law is local. However, we believe
that this approach is a serious candidate for a constitutive law for dense granular
flows, as it is able to describe in the same framework three different configurations:
Couette flows, inclined planes and flows on a heap.

This study, which contrasts with previous results on surface flows, raises many
questions. The first one concerns the generalization of the constitutive law to three-
dimensional deformations. We have seen that the approach proposed in this paper
does not allow us to describe the deformation observed in the transverse direction.
What kind of constitutive law has to be written to capture this variation?

The second question concerns the role of the channel length. We have seen that in
the steady uniform regime the flow thickness is controlled by the width of the channel.
What would happen for very wide channels, when the width of the flow becomes
comparable to the total length of the flow? Is the flow length in this case the new
relevant length scale of the problem?

Another question concerns unsteady and non-uniform flows. What will happen for
transient flows, for example, when avalanches are triggered on top of a pile? Do the
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sidewalls still play an important role in this case? To describe the complex dynamics
of avalanches, several models have been proposed based on depth-averaged hydro-
dynamics equations (Bouchaud et al. 1994; Boutreux, Raphaël & de Gennes 1998;
Douady, Andreotti & Daerr 1999; Khakhar, Orpe & Ottino 2001b; Aradian, Raphaël
& de Gennes 2002). What is the link between these approaches and the model presen-
ted here? Is a deeper insight into these models possible, now that we have more
information about the internal rheology suitable for dense granular flows? These
questions represent work for future investigations.

Finally, a last but fundamental issue concerns the physical origin of the constitutive
law. Up to now the proposed rheology rests on an empirical ground. Attempts to link
the observed macroscopic behaviour to the microscopic grain motion exist (Mills,
Loggia & Tixier 1999; Pouliquen, Forterre & Le Dizes 2001; Ertas & Halsey 2002;
GDR MiDi 2004) which are based on the idea that grains experience correlated or
cluster-like motions. Experiments seem to support this idea (Choi et al. 2004;
Pouliquen 2004), but the derivation of constitutive laws from microscopic bases
remains an open challenge.

The authors thank Bruno Andreotti for enlightening discussions and advice on the
PIV method and Frédéric Ratouchniak for technical support.

Appendix A. Rheological law
In this Appendix we show how the local constitutive law µ(I ), (4.3), can be obtained

from the expression of the basal friction law obtained in experiments on inclined
planes (Pouliquen & Forterre 2002; Forterre & Pouliquen 2003).

To this end we consider a granular layer of thickness h flowing on a plane inclined
at an angle θ . On one hand, the experiments on steady uniform flows have shown that
the bottom friction can be expressed in term of the thickness h and the depth-averaged
velocity 〈V 〉 as follow:

µb(〈V 〉, h) = µs +
µ2 − µs

βh
√

gh

〈V 〉L0

+ 1

, (A 1)

where µs , µ2, β and L0 are constants. One the other hand, if we assume that the
material is described by the constitutive law µ(I ) with I = |γ̇ |d/

√
P/ρs , the force

balance in the bulk implies µ(I (z)) = tan(θ). This implies that the parameter I is
constant across the layer, independent of z, depending only on the inclination of the
plane. As a consequence, from the definition of I , we obtain the velocity profile (GDR
MiDi 2004):

V (z)√
gd

= 2
3
I (θ)

√
φ cos(θ)

(
h3/2 − z3/2

)
d3/2

. (A 2)

From this equation we can compute the depth-averaged velocity:

〈V 〉√
gh

= 2
5
I (θ)

√
φ cos(θ)

h

d
. (A 3)

From this result, we can then rewrite the basal friction coefficient (A 1) in terms of
the parameter I as follow:

µb(I ) = µs +
µ2 − µs

5βd

2L0I
√

φ cos θ
+ 1

. (A 4)
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For consistency reasons, the friction law µ(I ) is then given by:

µ(I ) = µs +
µ2 − µs

I0

I
+ 1

, (A 5)

with

I0 =
5

2

dβ

L0

√
φ cos(θ)

.. (A 6)

In the constitutive law I0 should be a constant, whereas it depends on θ through
the term

√
cos(θ). However, this term does not vary much in the experimental range,

such that we may think that it is missing in the expression (A 1) coming from the
experimental data. Finally, from experimental measurements, Forterre & Pouliquen
(2003) give L0/d =1.65, β = 0.136, µs = tan(20.9◦), µ2 = tan(32.76◦). Taking φ ≈ 0.6
and an average value of 25◦ for θ , we obtain I0 = 0.279. The parameters µs , µ2 and
I0 then quantitatively define the constitutive law.

Appendix B. Analytical expressions for velocity profiles and for flow rate
Here, we derive the expressions of the velocity profile and the flow rate as a function

of the angle θ and of the depth z. The local friction law, (4.3), and the forces balance
equation, (4.4), give the following equation for the shear rate:

γ̇ ∗(z∗)

W ∗1/2
= −I0

√
z∗

W ∗ φ cos(θ)


 tan(θ) − µw

z∗

W ∗ − µs

µ2 − tan(θ) + µw

z∗

W ∗


 ≡

√
z∗

W ∗ F

(
z∗

W ∗ , θ

)
. (B 1)

The minus sign before I0 comes from the sign of the shear stress in our configuration.
To simplify the expressions, we define:

h∗

W ∗ =
tan(θ) − µs

µw

,
h∗

2

W ∗ =
µ2 − tan(θ)

µw

, �µ = µ2 − µs, (B 2a–c)

which leads to:

γ̇ ∗(z∗)

W ∗1/2
= −I0

√
z∗

W ∗ φ cos(θ)

(
h∗ − z∗

h∗
2 + z∗

)
. (B 3)

Integrating (B 3) with the boundary condition V ∗ =0 at z∗ = h∗, we find:

V ∗(z∗, θ)

W ∗3/2
= 2I0

√
φ cos(θ)

[
�µ

µw

(√
h∗

W ∗ −
√

z∗

W ∗ − h∗
2

W ∗

(
arctan

√
h∗

h∗
2

− arctan

√
z∗

h∗
2

))

− 1

3

(
h∗

W ∗

)3/2

+
1

3

(
z∗

W ∗

)3/2]

≡ G

(
z∗

W ∗ , θ

)

≡ G2

(
z∗

W ∗ ,
h∗(θ)

W ∗

)
. (B 4)
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Integrating the previous equation from the bottom of the flowing layer (z∗ = h∗) to
the free surface yields:

Q∗(θ)

W ∗5/2
=

V ∗
surf (θ)

W ∗3/2

h∗

W ∗ + 2I0

√
φ cos(θ)

(
h∗

2

W ∗

)3/2

×
{

2

15

h∗
2

W ∗

(
h∗

h∗
2

)5/2

− 2

3

�µ

µw

(
h∗

h∗
2

)3/2

+
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µw

[(
h∗

h∗
2

+ 1

)
arctan

√
h∗

h∗
2

−
√

h∗

h∗
2

]}
≡ K(θ)

≡ K2

(
h∗(θ)

W ∗

)
, (B 5)

where Vsurf is the velocity at the free surface (z∗ = 0). Equations (B 2a), (B 4) and (B 5)
can be rewritten with the following form:

tan(θ) = f1

(
Q∗

W ∗5/2

)
,

V ∗(z∗, Q∗)

W ∗3/2
= f2

(
z∗

W ∗ ,
Q∗

W ∗5/2

)
,

h∗

W ∗ = f3

(
Q∗

W ∗5/2

)
, (B 6)

where,

f1(X) = tan(K−1(X)), f2(X, Y ) = G2

(
X, K−1

2 (Y )
)
, f3(X) = K−1

2 (X). (B 7)

Appendix C. Asymptotic expressions at low flow rates
In this Appendix we give the asymptotic relations between (4.11) for low flow rate,

i.e. Q∗/W ∗5/2 → 0, h∗/W ∗ → 0 and θ → θs . Then (B 4) and (B 5) at the lower order
give:

V ∗
surf

W ∗3/2
≈ 4

15
I0

√
φ cos(θs)

�µ

µw

(
h∗

W ∗

)5/2

, (C 1)

Q∗

W ∗5/2
≈ 8

21
I0

√
φ cos(θs)

µw

�µ

(
h∗

W ∗

)7/2

, (C 2)

which can be rewritten as follow:

V ∗
surf

W ∗3/2
≈ 4

15

(
21
8

)5/7
(I0

√
φ cos(θs))

2/7

(
�µ

µw

)12/7(
Q∗

W ∗5/2

)5/7

, (C 3)

h∗

W ∗ ≈
(

8
21

I0

√
φ cos(θs)

µw

�µ

)−2/7(
Q∗

W ∗5/2

)2/7

. (C 4)
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